

Ø











**Classification of Entitles** 



# **Component Entities**

Component Entities

- A component entity is one which is directly related to a transaction entity via a one-to-many relationship.
- These entities define the details or components for each transaction
  - Component entities answer the "who", "what", "when", "where", "how" and "why" of a business event
  - For example, a **sales transaction** may be defined by a number of components:
    - Customer: who made the purchase
    - Product: what was sold
    - Location: where it was sold
    - Period: when it was sold
- Component form the basis for constructing dimension tables in star-schemas.



**Classification of Entitles** 

























| Minimal and Maxin                                          | nal Entities                                                    |                                      |
|------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| An entity is called mini<br>maximal if it is at the to     | mal if it is at the bottom of a op of one.                      | a maximal hierarchy and              |
|                                                            | easily identified as they are<br>"leaf" entities in hierarchica |                                      |
| <ul> <li>Maximal entities are en<br/>entities).</li> </ul> | tities with no many to one r                                    | <mark>elationships</mark> (or "root" |
|                                                            |                                                                 |                                      |



















| lat Schem                    | •                            |                                                         |
|------------------------------|------------------------------|---------------------------------------------------------|
| Tal Schem                    | a                            |                                                         |
|                              |                              |                                                         |
|                              |                              |                                                         |
|                              |                              |                                                         |
| Sale                         | Sale                         |                                                         |
| Item                         | Fee                          | When we collapse numerical amounts from                 |
| Sale_Id                      | Sale_Id                      | -                                                       |
| Prod_ld                      | Fee_Type_Id                  |                                                         |
| Qty                          | Fee                          | higher level transaction entities into another          |
| Value                        | Fee_Type_Name                | 5                                                       |
| Prod_Name                    | Sale_Date                    |                                                         |
| Prod_Type_Id                 | Sale_Mth                     | they will be repeated.                                  |
| Prod_Type_Name               | Sale_Qtr                     | tiley million lepeatea.                                 |
| Sale_Date Sale_Mth           | Sale_Yr<br>Sale_Fiscal_Yr    |                                                         |
| Sale_Qtr                     | Sale_Fiscal_Yr Posted_Date   |                                                         |
| Sale_Vr                      | Posted_Date                  | In the example data model, if a Sale consists of        |
| Sale_Fiscal_Yr               | Posted_Mtr                   | •                                                       |
| Posted Date                  | Posted Yr                    |                                                         |
| Posted_Mth                   | Posted_Fiscal_Yr             | three Sale Items, the discount amount will be           |
| Posted_Qtr                   | Discount                     |                                                         |
| Posted_Yr                    | Cust_Id                      |                                                         |
| Posted_Fiscal_Yr             | Cust_Name                    | stored in three different rows in the Sale Item         |
| Discount                     | Cust_Type_Id                 | stored in three different rows in the Sale item         |
| Cust_ld                      | Cust_Type_Name               |                                                         |
| Cust_Name                    | Cust_Regn_Id                 | table. A deliver the click count our counts to reath on |
| Cust_Type_Id                 | Cust_Regn_Name               | table. Adding the discount amounts together             |
| Cust_Type_Name               | Cust_State_Id                |                                                         |
| Cust_Regn_Id                 | Cust_State_Name              |                                                         |
| Cust_Regn_Name               | Loc_ld                       | then results in double-counting (or in this case,       |
| Cust_State_Id                | Loc_Name                     |                                                         |
| Cust_State_Name              | Loc_Type_Id                  |                                                         |
| Loc_ld                       | Loc_Type_Name<br>Loc_Regn_Id | triple)                                                 |
| Loc_Type_Id                  | Loc_Regn_Name                | u pie)                                                  |
| Loc_Type_Id<br>Loc_Type_Name | Loc_Hegn_Name                |                                                         |
| Loc_Regn_id                  | Loc_State_Name               |                                                         |
| Loc_Regn_Name                |                              |                                                         |
| Loc_State_Id                 |                              |                                                         |
| Loc State Name               |                              |                                                         |

Ø

Type of models

### **Terraced Schema**

- A terraced schema is formed by collapsing entities down maximal hierarchies, but stopping when they reach a transaction entity.
- This results in a single table for each transaction entity in the data model, providing by the way a separation of transactional levels

3



Type of models





















# Galaxy A set of star schemas or constellations can be combined together to form a galaxy. A galaxy is of a collection of star schemas with shared dimensions. Unlike a constellation schema, the fact tables in a galaxy do not need to be directly related. (1) Type of models From OLTP to OLAP - 51





Type of models

Aggregated

numerical

attributes

てわ

From OLTP to OLAP - 54

State\_Name

Regn\_Name

Customer

Type

Cust\_Type\_Name

Cust\_Type\_Id

State\_Id

Customer

Cust\_ld

Cust\_Name

Cust\_Type\_Id Cust\_Regn\_Id





# <section-header><list-item><list-item><list-item><list-item><list-item>

# Star Cluster Schema - Deriving from E/R Model

- Each star cluster is formed by (cont):
  - Where hierarchical relationships exist between transaction entities, the child entity should inherit all dimensions (and key attributes) from the parent entity.
  - Numerical attributes within transaction entities should be aggregated by the key attributes (dimensions). The attributes and functions used depend on the application.









### The need for evaluation and model tuning

- In practice, dimensional modeling is an iterative process. These procedures are useful for producing a first cut design, but this will need to be refined to produce the final data mart design.
- Most of these modifications have to do with further simplifying the model and dealing with non hierarchical patterns in the data.
  - Combining Fact Tables
  - Combining Dimension Tables
  - Produce pre-aggregated stars

Evaluation and model tuning

From OLTP to OLAP - 63

### The need for evaluation and model tuning

### Combining Fact Tables

Fact tables with the same primary keys (i.e. the same dimensions) should be combined. This reduces the number of star schemas and facilitates comparison between related facts (e.g. budget and actual figures).

### Combining Dimension Tables

 Creating dimension tables for each component entity often results in a large number of dimension tables. To simplify the data mart structure, related dimensions should be consolidated together into a single dimension table.



**U**ħ

Evaluation and model tuning





